Overexpression of Ogg1 in mammalian cells: effects on induced and spontaneous oxidative DNA damage and mutagenesis.

نویسندگان

  • S Hollenbach
  • A Dhénaut
  • I Eckert
  • J P Radicella
  • B Epe
چکیده

Chinese hamster ovary cell lines (AA8 and AS52) were stably transfected to overexpress hOgg1 protein, the human DNA repair glycosylase for 7,8-dihydro-8-oxoguanine (8-oxoG). In the transfectants, the repair rate of 8-oxoG residues induced by either potassium bromate or the photosensitizer [R]-1-[(10-chloro-4-oxo-3-phenyl-4H-benzo[a]quinolizin-1-yl)-carbo nyl ]-2-pyrrolidinemethanolplus light was up to 3-fold more rapid than in the parental cells. However, the improved repair had little effect on the mutagenicity of potassium bromate in the guanine phosphoribosyl transferase (gpt) locus of the OGG1-transfected AS52 cells. The steady-state (background) levels of DNA base modifications sensitive to Fpg protein, which include 8-oxoG, in cells not exposed to a damaging agent were not reduced by the overexpression of Ogg1 protein. Moreover, the spontaneous mutation rates in the gpt locus were similar in OGG1-transformed and vector-only-transformed cells. The results demonstrate the potential of Ogg1 protein to remove its substrate modifications from most of the chromosomal DNA. They indicate, on the other hand, that the Ogg1 protein alone may not be rate limiting for the repair of the residual substrate modifications observed in cells under normal growth conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells

Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...

متن کامل

Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions.

The mitochondrial DNA base modification 8-hydroxy 2'-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes ...

متن کامل

Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes

Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F.szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocyt...

متن کامل

Alteration of OGG1, MYH and MTH1 genes expression in relapsing-remitting multiple sclerosis patients

Introduction: Previous studies revealed that oxidative stress is elevated in multiple sclerosis (MS). It can harm to biological macromolecules such as DNA. However, the molecular mechanism in protection of genetic information from DNA damages is not clear in MS disease. In this study the expression level of some important genes of OGG1 and MYH involved in base excision repair pathway and, MTH1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 1999